назад

- на главную
- к оглавлению рубрики

ремонт

- импортных
  холодильников

- отечественных
  стиральных машин
- импортных стиральных
  машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

Ремонт холодильников Снайге

17 декабря 2006 г.
Автор:
http://www.electronicsdesign.ru
 
Ремонт холодильников  

«Снайге RF270, RF310, RF315»  холодильник

  FR270 FR310 FR315
Класс эффективности энергопотребления по директиве 94/2ЕС А В А В А В
Расход электроэнергии при температуре окружающей среды 25°С, кВт*ч/сут 0,79 1,08 0,89 1,23 0,85 1,17
Полный общий объем холодильника, л 261 309 314
Полезный объем камеры хранения, л 170 193 229
Общий объем морозильной камеры 83 114 77
Полезный объем морозильной камеры 61 92 61
Время повышения температуры в морозильной камере при отключении электроэнергии от температуры хранения до -9°С, ч 17
Мощность замораживания, кг/сут 5 7 5
Температура в морозильной камере, С -18
Площадь полок, дм2 105 140 145
Потребляемое напряжение, В 220...230
Колебание напряжения в сети, В 187...253
Потребляемая мощность, Вт 90 90 85
Габаритные размеры, мм 1450х600х600 1730х600х600 1730х600х600
Масса, кг 60 65 64

Устройство холодильника

Холодильники/морозильники (далее холодильники) RF270, RF310, RF315 — это компрессионные двухдверные холодильники, предназначенные для кратковременного хранения продуктов в охлажденном состоянии в холодильной камере, и длительного хранения замороженных продуктов и приготовления пищевого льда в морозильной камере. Холодильники климатического исполнения — умеренного класса «N» предназначенные для эксплуатации в бытовых условиях. Холодильник экологически чистый — в нем отсутствуют компоненты, разрушающие слой озона. В холодильнике как хладагент использован R6ООа. Конструкцией холодильника предусмотрена возможность перенавески дверей для левостороннего открывания.

 

Снайге rf270 Снайге rf310
Снайге  rf315  

 

 

 

Рис. 1 Внешний вид  холодильников Снайге-RF270, RF310, RF315

 

Температурный режим в холодильной камере холодильника регулируется ручкой терморегулятора. Терморегулятор выключен, когда ручка в шкале терморегулятора установлена в положении с отметкой «О». При повороте ручки терморегулятора по часовой стрелке температура в камере понижается. Загорающаяся зеленая лампочка световой сигнализации свидетельствует о том, что холодильник включен в электросеть.

Оттаивание испарителя морозильной камеры производится не реже три раза в год. Испаритель в холодильниой камере называется «плачущим». Оттайка «плачущего» испарителя происходит постоянно в период остановки компрессора (испаритель может быть покрыт инеем или каплями воды). Талая вода постоянно стекает в ванночку, расположенную на компрессоре.

 

Электрическая схема холодильников Снайге rf270, rf310, rf315

Рис. 2 Электрическая схема холодильников Снайге RF270, RF310, RF315:

Х — провод сетевой; Н1 — сигнальная лампа зеленого цвета; EL — лампа освещения; В — терморегулятор; М — компрессор; К — пусковое реле; К1 — защитное реле; S — выключатель; СR — конденсатор

 

Типовые неисправности и ремонт холодильника

Причина Способ устранения
Холодильник, включенный в электросеть, не работает (не горит зеленая лампочка)
Возможно, что нет напряжения в электросети или нет контакта штепсельной вилки с розеткой Проверить напряжение в электросети и контакт вилки с розеткой
При работе холодильника появился необычный шум
Либо холодильник неправильно установлен, либо трубопроводы холодильного агрегата касаются шкафа холодильника или стены Проверить установку холодильника.
Устранить касание трубопроводов
Наличие характерного для отлипания звука при открывании двери, тугое открывание (закрывание) двери
Прилипание уплотнителя к плоскости шкафа в зоне прилегания двери со стороны ее навески Необходимо промыть уплотнитель и плоскость шкафа, к которой он прилегает, теплой мыльной водой и насухо вытереть мягкой тканью
При оттайке испарителя вода собирается в лотке и стекает в камеру
Засорена система отвода талой воды  Прочистить канал в лотке с помощью скребка

 

 

Статья подготовлена по материалам книги «Холодильники от А до Я» С.Л. Корякин-Черняк издательства НиТ СпБ 2003 серии Домашний мастер

Мы рекомендуем еще посмотреть:

Начинающим программистам микроконтроллеров PIC

<< Назад в раздел   Распечатать   Рекомендовать

Автор: Владимир Д.
degvv@mail.ru

Исходя из собственного опыта начала изучения программирования микроконтроллеров постараюсь дать несколько практических советов по составлению программ на ассемблере. Все, приведенные ниже, примеры программирования даны применительно к Pic контроллерам среднего семейства Microchip,как наиболее приемлемых для начала освоения, ввиду относи- тельно простой их архитектуры и несложной системы команд ассемблера.

Предлагаемые программы вполне можно применять в виде готовых макросов (законченных подпрограмм).Они не привязаны к конкретному контроллеру, поэтому при применении следует учитывать данные из datasheet -ов.

1.Применение прерываний от переполнения таймера TMR0 (RTCC)

Примем тактовую частоту - Fтакт. = 4,096 МГц (стандартный кварц). Тогда время цикла составит t c = 1 / Fтакт. * 4 = 0,97656 мкс

INI_TMR				; инициализация  режима прерываний от  RTCC
		bsf STATUS,RP0	; выбираем  банк 1
		movlw b'00000100'
		movwf OPTION		; предделитель  для  RTCC   1 :  32
		bcf STATUS,RP0	;  банк 0
		movlw b'10100000'
		movwf INTCON		;  разрешено прерывание от RTCC
		movlw .96		;  загружаем  в  RTCC  предварительное число 96
		movwf TMR0

Получим время прерываний:
t i = t c * 32 * (256 - 96 = 160)
t i = 0,97656 * 32 * 160 = 5 000 мкс = 5 мс

Теперь, если в Вашу любую программу ввести бесконечный цикл (так называемый цикл ожи- дания прерывания), и окончание программы переводить на этот цикл, получим временную привязку к 5 мс.И после прерывания программа вернётся по адресу, указанном вектором прерываний (чаще это 04h).Для чего это можно использовать - смотри дальше.

Итак:

;
		org   0
		START		; начало выполнения программы после
;					включения питания
		org   04h		; а это адрес вектора прерывания, по которому
		main		; будет выполняться  основная  программа
;
START				; здесь обычно происходит обязательная  ини-
		INI_TMR		; циализация  портов, режимов, регистров и т.п.
		INI_PORTS
loop
		goto loop		; а это и есть  бесконечный цикл
;--------------------------------------------------

main
;               далее  идёт  тело  основной программы,
;		в которой обязательно надо создать программу обслуживания  прерываний от RTCC,
;            вызываемой   командой  CALL:

ServTMR
		btfsc INTCON,RTIF	;  проверяем  флаг срабатывания прерываний от RTCC  и
		call SET_TMR		;  если "да",то снова инициализируем  TMR0
		return		;  если "нет" -  возврат  в  место вызова  ServTMR в
					;  основной  программе main
;
SET_TMR		movlw .96
		movwf TMR0		; снова загружаем число 96
		bcf INTCON,RTIF		; сбрасываем флаг срабатывания
		retfie		; возврат  с разрешением прерываний  в ServTMR, а
					; затем в основную программу  main

Пример использования прерывания от RTCC для получения секундного импульса на одном из выходов , скажем, порта В - RB0 : Используем регистр Rsec, который должен быть ранее объявлен в в адресном поле рабочих регистров.

FORM_1S				; в каждом цикле,   а он  по прерыванию RTCC  длится
		incf Rsec,w		; 5 Мс,  увеличиваем регистр Rsec на 1 до  числа 200
		xorlw .200		; (5 мс * 200 = 1 сек)
		btfsc STATUS,z
		goto OUT_PORT		; при Rsec = 200  флаг  z = '1' и  переход на управление
					; выводом RB0 порта В
		return		; возврат в основную программу  main
;
OUT_PORT		btfss PORTB,0			; проверяем состояние вывода RB0
		goto OUT_ON		; если RB0 ='0', то  устанавливаем  в '1'
		bcf PORTB,0		; в противном случае - устанавливаем в '0'
		goto main		; возврат в основную программу
;
OUT_ON		bsf PORTB,0		; устанавливаем RB0 = '1'
		goto main

Таким образом на выходе RB0 порта В каждую секунду уровень сигнала будет изменяться то '0' то '1'.

В регистрах контроллера информация находится обычно в двоичном виде, ( в бинарном коде). Но часто необходимо получить информацию в двоично - десятичном виде (BCD - код), скажем, для управления поразрядно семисегментным индикатором.

Рассмотрим примеры преобразований двоичного кода b2 в двоично - десятичный BCD и наоборот.

В 8 - bit регистре можно записать в двоичном коде число от 0 до 255 ( от b'00000000' до b'11111111' ). Преобразуем двоичное число в три разряда двоично - десятичного кода - "сотни", "десятки" и "единицы". Для этого будем использовать следующие регистры, которые должны быть заранее объявлены в адресном поле рабочих регистров :

Rbin - регистр хранения числа в двоичном коде b2
Rhan - регистр "сотни" кода BCD
Rdec - регистр "десятки" кода BCD
Rsim - регистр "единицы" кода BCD

Преобразования проводим используя операции вычитания чисел 100, а затем 10 с подсчётом количества положительных вычитаний.

CON_100		movlw .100		; вычитаем  100  из  Rbin  c  проверкой, что
		subwf Rbin,w		; результат  не  отрицательный. Флаг  'c' = 1 при
		btfss STATUS,c		; результате > или =  0, и  'c' = 0  при   < 0
		goto CON_10
		incf Rhan,f		; подсчёт  количества "сотен"
		movwf Rbin		; результат вычитания сначала храним в регистре
		goto CON_100		;аккумуляторе и только потом возвращаем в Rbin
					; чтобы  не  потерять остаток при отрицательном
					; результате  вычитания.
CON_10		movlw .10		; аналогично  определяем  "десятки"
		subwf Rbin,w
		btfss STATUS,c
		goto end_con
		incf Rdec,f
		movwf Rbin
		goto CON_10;
end_con
		movf Rbin,w
		movwf Rsim		; после вычитаний  заносим остаток в "единицы"
					;продолжение выполнения  программы

Обратное преобразование BCD - кода в b2. Используем те же регистры Rhan, Rdec, Rsim где находится число в BCD - коде, регистры RbinH - старший разряд и RbinL - младший разряд для чисел ( > 255) в коде b2 и вспомогательные регистры RM1 - "множимое" , RM2- "множитель".Для преобразования BCD в b2 нужно умножить "сотни" на 100, "десятки" на 10 и сложить всё вместе с "единицами" и с учётом переноса в старший разряд при необ- ходимости.Для умножения используем операцию сложения.

B2X_100		movlw .99		; преобразование  "сотен"
		movwf RM2		; множитель  =  кол - во сложений (100) минус  один
		movf Rhan,w
		movwf RM1		; множимое  =  "сотни"
loopX100	addwf RM1,w
 		btfsc STASTUS,c		; проверяем  перенос в  старший  разряд
		incf RbinH,f		; если есть перенос
		decfsz RM2,f		; контролируем  количество  сложений
		goto loopX100
		movwf RbinL		; результат  сложения  заносим  в  регистр  мл. разряда
;
B2X_10		movlw .9		; преобразование  "десятков"
		movwf RM2		; множитель  =  кол - во  сложений (10) минус один
		movf Rdec,w
		movwf RM1		; множимое = "десятки"
loopX10		addwf RM1,w		; здесь перенос можно не проверять, т.к. результат
		decfsz RM2,f		; всегда  <  255
		goto loopX10
		addwf RbinL,f		; добавляем результат преобразования  "десятков"
		btfsc STATUS,c		; учитывая  возможный  перенос  в  разрядах
		incf
		RbinH,f
		movf Rsim,w
		addwf Rbin,f		; добавляем  "единицы" с учётом  возможного  переноса
		btfsc STATUS,c
		incf RbinH,f

Конец преобразованиям и дальнейшее выполнение программы. В регистрах RbinL и RbinH получили 16 - bit число в коде b2.

Для выполнения арифметической операции деления по аналогии с умножением, рассмот- ренном выше, применяется операция вычитания. Допустим нам нужно произвести деление числа, находящегося в регистрах RHsum (старшие разряды) и RLsum (младшие разряды) - на делитель ( примем делитель не > 255) находящийся в регистре Rdel.

Результат будем заносить в регистры RHrez и RLrez (старшие и младшие разряды соот- ветственно) :

OP_DEL
		movf Rdel,w
		subwf Rlsum,w
		btfss STATUS,c		; проверяем  не отрицательный  ли  результат?
		goto DEF_carry		; если  "да", то  проводим  заём  из  ст. разряда
		incf RLrez,f		; подсчитываем  кол-во  вычитаний  с  учётом
		btfsc STATUS,c		; возможного  переноса  в  старший  разряд
		incf RHrez,f
		movwf RLsum		; восстанавливаем  остаток, что бы  не  потерять
		goto OP_DEL		; при  отрицательном  результате вычитания
;
DEF_carry
		movlw 0h
		xorwf RHsum,w		; всё  ли  заняли из старшего разряда  в младший?
		btfsc STATUS,z		; если  "да", т.е.  RHdel  =  0  и  в  OP_DEL  отри-
		goto OUT_ DEL		; цат. результат - конец  делению  и  выход
		decf RHsum,f		; если  "нет" - заём  из  старшего  разряда  и  про-
		incf RLrez,f		; должаем  дальше
		btfsc STATUS,c		; проверка  необходимости  переноса  в  ст.разряд
		incf RHrez,f
		goto OP_DEL

Источник: www.radiokot.ru

ОС Windows Vista - Vista 64, Vista drivera и Vista pack || Квартиры Тюмень.

Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.