назад

- на главную
- к оглавлению рубрики

ремонт

- импортных
  холодильников

- отечественных
  стиральных машин
- импортных стиральных
  машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

1. Устройство холодильника.

Холодильник двухкамерный, выполнен в виде напольного шкафа. Корпус шкафа холодильника и корпуса дверей изготовляют из стального листа с последующим нанесением защитно-декоративного покрытия, внутренний шкаф и панели дверей — из пластмассы. Теплоизоляцией служит пенополиуретан.

На боковой стене холодильной камеры расположен блок приборов, который содержит терморегулятор Т-130, выключатель ВОК-2 и электрическую лампу РН 220-15-1. Лампа автоматически загорается при открывании двери и гаснет при закрывании.

Оттаивание испарителя холодильной камеры автоматическое, в период нерабочей части каждого цикла работы холодильного агрегата, которое обеспечивается с помощью терморегулятора Т-130 с плюсовой температурой включения и нагревателя, закрепленного на задней плоскости испарителя.

Конструкция внутреннего шкафа и панели двери в холодильной камере позволяет осуществлять перестановку полок и барьеров по высоте с интервалом 50 мм. Полки можно вынимать из холодильной камеры при открывании двери на 90°. Конструкция холодильников предусматривает возможность перенавески дверей с тем, чтобы они открывались справа налево. Дверные проемы уплотняются эластичным уплотнителем с магнитной вставкой. Низкотемпературная и холодильная камеры охлаждаются с помощью листотрубных испарителей.

Электрическая схема холодильника Бирюса-18

Рис. 1 Электрическая схема холодильника Бирюса-18:

М — компрессор ХКВ6- 1ЛБУ; К — реле Р1: Т — терморегулятор Т130; S — выключатель ВОК-2; Л - лампа РН 220-15-1: Н1, Н2 — электронагреватели; Х — распределительная колодка; Б, К, С — цвет проводов (К — коричневый, Б — белый, С — синий); 1, 2, 3, 4, 5 — номера на распределительной колодке

Ремонт холодильника

Замена дверей холодильника
  • Открыть двери, вынуть барьеры и сосуды, расположенные на панели двери холодильной камеры.
  • Вывинтить винты, снять решетку и выдвинуть облицовку.
  • Отвинтить болты, приподнять петлю и снять дверь холодильной камеры.
  • Вращением гайки вывести из зацепления с кронштейном ось и снять дверь низкотемпературной камеры.
  • Заменить дверь и осуществлять навеску в обратной последовательности.
Замена холодильного агрегата
  • Извлечь из холодильника все полки, барьеры и сосуды. Снять двери.
  • Ослабить винты и отсоединить сильфонную трубку от испарителя холодильной камеры.
  • Вынуть кожух электропроводки, разъединить пластинчатые зажимы электронагревателя испарителя холодильной камеры, нагревателя средней планки и блока приборов.
  • Отсоединить блок приборов от шкафа.
  • Вынуть среднюю планку и платик.
  • Опустив электронагреватель средней планки на верхнюю полку испарителя низкотемпературной камеры, вынуть перегородку.
  • Протолкнуть штифты, вынуть втулки и снять лоток. Удалить штыри и отвести испаритель холодильной камеры от стенки шкафа.
  • Вынуть крышку трубопровода и теплоизоляцию трубопровода.
  • Отсоединить конденсатор от задней стенки холодильника.
  • Снять наружный фланец, вынуть теплоизоляцию люка и внутренний фланец путем деформации последнего, предварительно сняв с него зажим.
  • Отсоединить штепсельную колодку от компрессора.
  • Поворотом защелок открепить компрессор от основания шкафа.
  • Вынуть штыри и втулки, крепящие полки испарителя низкотемпературной камеры к шкафу и, сложив их лесенкой, вывести через люк шкафа наружу.
  • Заменить агрегат.
  • Сборку проводить в обратной последовательности.
Замена водостока
  • Отсоединить конденсатор от задней стенки холодильника.
  • Вынуть гидрозатвор из отверстия шкафа, разъединив его с лотком.
  • Отсоединить водосток от сосуда. Отремонтировать или заменить дефектные детали.
  • Сборку проводить в обратной последовательности.
Замена электронагревателя испарителя холодильной камеры
  •  Вынуть кожух электропроводки, разъединить пластинчатые зажимы электронагревателя испарителя холодильной камеры, электронагревателя средней планки и блока приборов.
  • Вынуть штыри и отвести испаритель холодильной камеры от стенки шкафа.
  • Заменяют нагреватель.
  • Сборку проводить в обратной последовательности.
Замена электронагревателя средней планки
  • Снять двери.
  • Вынуть кожух электропроводки, разъединить пластинчатые зажимы электронагревателя испарителя холодильной камеры, электронагревателя средней планки и блока приборов.
  • Вынуть среднюю планку и платик.
  • Опустить электронагреватель средней планки на верхнюю полку испарителя низкотемпературной камеры, вынуть перегородку.
  • Протолкнуть штифты, вынуть втулки и снять лоток.
  • Отвести испаритель холодильной камеры от стенки шкафа.
  • Вынуть крышку трубопровода и теплоизоляцию трубопровода.
  • Заменить электронагреватель.
  • Сборку проводить в обратной последовательности .
Замена панели на двери холодильной камеры
  • Вынуть защелки и вывинтить винты.
  • Снять магнитный уплотнитель с панели.
  • Заменить панель и закрепить ее на двери.
  • Сборку проводить в обратной последовательности.
Ремонт электропроводки
  • Ослабить винты и отсоединить сильфонную трубку от испарителя холодильной камеры.
  • Вынуть кожух электропроводки и разъединить пластинчатые зажимы электронагревателя испарителя холодильной камеры, электронагревателя средней планки и блока приборов.
  • Отсоединить блок приборов от шкафа.
  • Вынуть штыри и отвести испаритель холодильной камеры от стенки шкафа.
  • Отсоединить конденсатор от задней стенки холодильника.
  • Снять наружный фланец, вынуть теплоизоляцию люка и внутренний фланец путем деформации последнего, предварительно сняв с него зажим.
  • Отсоединить штепсельную колодку от компрессора и, приподняв испаритель холодильной камеры, через люк шкафа вывести блок приборов наружу.
  • Снять колодку и крышку.
  • Провести ремонтные работы электропроводки холодильника.
  • Сборку проводить в обратной последовательности.
Ремнот отечественных холодильников  

Холодильник «Бирюса-22» КШД-255

Тип холодильника Компрес-сионный Оттаивание испарителя
холодильной камеры
Полуавтоматическое
Количество камер 2 Расход электроэнергии при температуре воздуха 25°С, кВт ч/сут 1,5
Общий объем, дм3 255 Габаритные размеры, мм 1450х580х600
Объем низкотемпературной камеры, дм3 85 Масса, кг 67
Температура в низкотемпературной камере,°С -18    
Потребляемая мощность, Вт 135    

 

Бытовой двухкамерный холодильник БИРЮСА-22 КШД-255 предназначены для хранения продуктов в охлажденном и замороженном состоянии, приготовления пищевого льда и охлаждения напитков в быту. Холодильник может работать в режиме «Замораживание».

Внешний вид и устройство холодильника Бирюса-22

Рис. 2 Внешний вид и устройство холодильника Бирюса-22

 

Схема удаления талой воды

Рис. 3 Схема удаления талой воды

Холодильник имеет ряд элементов комфортности: возможность перенавески дверей для право- или левостороннего открывания, а также перестановки полок и барьеров по высоте с интервалом 50 мм; ограничение угла открывания двери холодильной камеры; наличие системы автоматического оттаивания испарителя холодильной камеры и удаления талой воды за пределы холодильника с последующим испарением. В холодильнике предусмотрена световая сигнализация режимов работы («Замораживание» и «Хранение»).

Холодильник выполнен в виде напольного шкафа, разделенного на две камеры, каждая со своей дверью. В нижней холодильной камере поддерживается температура 0...10°С, в верхней низкотемпературной (морозильной) для хранения замороженных продуктов температура —18°С. Холодильник выполнен с установочной плоскостью; в его окантовку встроен блок управления и сигнализации, который состоит из переключателя режимов работы, обеспечивающего два режима работы морозильной камеры («Замораживание» и «Хранение»), индикатора напряжения и переключателя электроподогрева средней планки.

Включение электронагревателя средней планки осуществляется переключателем при появлении конденсата (влаги) на лицевой поверхности средней планки. Конденсат может появиться при высокой влажности окружающего воздуха. Электронагреватель планки может оставаться включенным постоянно. Температурный режим в холодильнике устанавливают с помощью ручки терморегулятора. Поддерживается режим автоматически; при этом в случае недостаточного охлаждения ручку поворачивают по часовой стрелке, при переохлаждении — в противоположную сторону. На ручке терморегулятора нанесена градуировка от 1 до 7 (0 — отключение работы холодильника). На боковой стенке холодильной камеры закреплен блок приборов, который состоит из лампочки, терморегулятора и выключателя. При замене лампочки необходимо снять рассеиватель.

 

Электрическая схема холодильника Бирюса-22 с переключателем электронагревателя планки

Рис. 4 Электрическая схема холодильника Бирюса-22
с переключателем электронагревателя планки:

 М — компрессор; К— реле пускозащитное; Т — терморегулятор, SB — выключатель; Н1 — электронагреватель испарителя (220 В, 12 Вт); Н2 — электронагреватель средней планки 220 В, 5 Вт; Л — лампочка (220 В, 15 Вт); HL — индикатор (зеленый); SA1 — переключатель электронагревателя планки; SA2 — переключатель режима работы; Х — колодка распределительная;

Электрическая схема холодильника Бирюса-22 без переключателем электронагревателя планки

Рис. 5 Электрическая схема холодильника Бирюса-22
без переключателем электронагревателя планки:

М — компрессор; К — реле пускозащитное; Т — терморегулятор: В — выключатель; Н1 — электронагреватель 220 В, 15 Вт: Н2 — электронагреватель 220 В, 5 Вт: Л — лампочка 220 В, 15 Вт; SA — переключатель режимов работы «Замораживание» и «Хранение" (оранжевый); HL — индикатор (зеленый); Х — колодка распределительная; выключатель SB изображен в положении, когда дверь холодильной камеры открыта

 

Типовые неисправности и ремонт холодильника

Причина Способ устранения
Стук, шум, дребезжание
Неправильно установлен холодильник Обеспечить устойчивое положение холодильника с помощью регулировочных опор
Трубопроводы холодильного агрегата касаются металлических конструкций холодильника, пола или стены Осторожно отогнуть трубку у места касания
Запах в холодильной камере
Неправильный уход за холодильником (некачественная упаковка хранящихся продуктов или лекарств, выделяющих запахи) Устраняется самим потребителем путем тщательного мытья и проветривания. Гарантийному ремонту не подлежит
Нет освещения в холодильной камере
Неисправна лампочка Заменить лампочку
Нарушена контактная система выключателя или патрона Проверить внешним осмотром, если возможно, то устранить, если нет, то заменить патрон или выключатель
Наличие признаков замыкания
Нарушена изоляция электрической цепи холодильника Проверить сопротивление изоляции: между токоведущими частями вилки и корпусом холодильника; между выводными контактами компрессора и корпусом холодильника: между клеммами электронагревателей и корпусом холодильника. Сопротивление изоляции должно быть не менее 2 МОм, При пониженном сопротивлении заменить негодные элементы электропроводки, проверить отсутствие механических повреждений и определить место пробоя изоляции
Холодильник не включается в работу
Понижено или отсутствует напряжение в электрической сети Проверить вольтметром напряжение сети (напряжение должно составлять 187...242 В)
Нарушен контакт вилки и розетки Проверить исправность вилки и розетки
Нарушено соединение проводов с клеммами реле, терморегулятора или между проходными контактами и посадочными гнездами Проверить омическое сопротивление электрической сети холодильника. Сопротивление рабочей обмотки электродвигателя должно составлять 14... 16 0м
Неисправный терморегулятор:
а) нарушена электрическая цепь;
б) утечка хладагента из сильфонной трубки
Проверить цепь терморегулятора. При температуре в холодильной камере выше 8°С электрическая цепь терморегулятора должна быть замкнута. Неисправный терморегулятор подлежит замене
Неисправный электродвигатель Проверить сопротивление в обмотках электродвигателя в холодном состоянии. Рабочее сопротивление должно составлять 14.,.16 Ом, пусковое — 40...32 Ом. При пониженном сопротивлении в двигателе агрегат заменить. При замене терморегулятора и пускозащитного реле проверить целостность заводской пломбировки
Отсутствует охлаждение при работающем компрессоре
Утечка хладагента из системы трубопроводов агрегата Определить место утечки хладагента по наличию масляных пятен на трубопроводах агрегата или течеискателем. Проверить потребляемую мощность холодильника. При отсутствии хладагента потребляемая мощность менее 120 Вт. Если обнаружен дефект, агрегат заменить
Засорение капиллярной трубки  Потребляемая мощность холодильника в течение 3...5 мин после включения составляет 150...165 Вт, затем падает до 120 Вт. Испаритель на входе теплый. При наличии дефекта агрегат заменить
Холодильник работает нестабильно (испаритель охлаждается и отепляется при работающем компрессоре)
Замерзание влаги в капиллярной трубке Снять перегородку, подогреть конец капиллярной трубки у входа в патрубок испарителя при работающем компрессоре В результате нагревания будет слышно характерное шипение хладагента, входящего в испаритель, и испаритель начнет обмерзать. При наличии дефекта агрегат заменить
Холодильник работает непрерывно
Частичная утечка хладагента из системы агрегата По наличию масляных пятен на трубопроводах и с помощью течеискателя определить место утечки. При наличии дефекта агрегат заменить
Сильфонная трубка терморегулятора касается электронагревателя, расположенного на задней стенке испарителя холодильной камеры Устранить касание
На испарителе холодильной камеры постоянно нарастает снеговая «шуба»
Не работает электронагреватель на испарителе  Проверить качество присоединения клемм электронагревателя и электропроводки. Проверить сопротивление электронагревателя, отсоединив клеммы от электропроводки. Сопротивление должно составлять 4000...5000 Ом. Можно подключить электронагреватель в сеть. При этом потребляемая мощность должна быть в пределах 10...12 Вт. Электронагреватель на ощупь должен отепляться
На перегородке между дверями конденсируется влага
Не работает электронагреватель в перегородке Проверить электронагреватель по методике, изложенной выше Потребляемая мощность должна быть в пределах 5...6 Вт

 

Ремнот отечественных холодильников  

Холодильник «Бирюса-22-1» КШД-255

Тип холодильника Компрес-сионный Оттаивание испарителя
холодильной камеры
Полуавтоматическое
Количество камер 2 Расход электроэнергии при температуре воздуха 25°С, кВт ч/сут 1,5
Общий объем, дм3 255 Габаритные размеры, мм 1435х580х600
Объем низкотемпературной камеры, дм3 85 Масса, кг 65
Температура в низкотемпературной камере,°С -18    
Потребляемая мощность, Вт 135    

 

Бытовой двухкамерный холодильник БИРЮСА-22-1 КШД-255 предназначен для хранения продуктов в охлажденном и замороженном состоянии, приготовления пищевого льда и охлаждения напитков в быту.

Внешний вид и устройство холодильника Бирюса-22-1

Рис. 6 Внешний вид и устройство холодильника Бирюса-22-1

 

Холодильники имеют ряд элементов комфортности: возможность перенавески дверей для право- или левостороннего открывания, а также перестановки полок и барьеров по высоте с интервалом 50 мм; ограничение угла открывания двери холодильной камеры; наличие системы автоматического оттаивания испарителя холодильной камеры и удаления талой воды за пределы холодильника с последующим испарением.

Холодильник выполнен в виде напольного шкафа, разделенного на две камеры, каждая со своей дверью. В нижней холодильной камере поддерживается температура О...10°С, в верхней низкотемпературной (морозильной) для хранения замороженных продуктов температура —18°С.

Включение электронагревателя средней планки осуществляется переключателем при появлении конденсата (влаги) на лицевой поверхности средней планки. Конденсат может появиться при высокой влажности окружающего воздуха. Электронагреватель планки может оставаться включенным постоянно, при этом нет необходимости следить за появлением конденсата на средней планке.

Температурный режим в холодильнике устанавливают с помощью ручки терморегулятора. Поддерживается режим автоматически; при этом в случае недостаточного охлаждения ручку поворачивают по часовой стрелке, при переохлаждении — в противоположную сторону. На ручке терморегулятора нанесена градуировка от 1 до 7 (0 — отключение работы холодильника).

Электрическая схема холодильника Бирюса-22-1

Рис.7 Электрическая схема холодильника Бирюса-22-1:

М — компрессор; К — репе пускозащитное; Т — терморегулятор; Н1 — электронагреватель испарителя (220 В, 12 Вт); Н2 — электронагреватель средней планки (220 В, 5 Вт); SB — выключатель: Л — лампочка (220 В, 15 Вт); Х — колодка распределительная

Типовые неисправности и ремонт холодильника

Причина Способ устранения
Стук, шум, дребезжание
Неправильно установлен холодильник Обеспечить устойчивое положение холодильника с помощью регулировочных опор
Трубопроводы холодильного агрегата касаются металлических конструкций холодильника, пола или стены Осторожно отогнуть трубку у места касания
Наличие признаков замыкания
Нарушена изоляция электрической цепи холодильника Проверить сопротивление изоляции: между токоведущими частями вилки и корпусом холодильника; между выводными контактами компрессора и корпусом холодильника; между клеммами электронагревателей и корпусом холодильника. Сопротивление изоляции должно быть не менее 2 МОм. При пониженном сопротивлении заменить негодные элементы электропроводки, проверить отсутствие механических повреждений и определить место пробоя изоляции
Запах в холодильной камере
Неправильный уход за холодильником (некачественная упаковка хранящихся продуктов или лекарств, выделяющих запахи) Устраняется самим потребителем путем тщательного мытья и проветривания. Гарантийному ремонту не подлежит
Нет освещения в холодильной камере
Неисправна лампочка Заменить лампочку
Нарушена контактная система выключателя или патрона Проверить внешним осмотром, если возможно, то устранить, если нет, то заменить патрон или выключатель
Холодильник не включается в работу
Понижено или отсутствует напряжение в электрической сети Проверить вольтметром напряжение сети (напряжение должно составлять 187,..242 В)
Нарушен контакт вилки и розетки Проверить исправность вилки и розетки
Нарушено соединение проводов с клеммами реле, терморегулятора или между проходными контактами и посадочными гнездами Проверить омическое сопротивление электрической сети холодильника. Сопротивление рабочей обмотки электродвигателя должно составлять 14...16 Ом
Неисправный терморегулятор:
 а) нарушена электрическая цепь;
 б) утечка хладагента из сильфонной трубки
Проверить цепь терморегулятора. При температуре в холодильной камере выше 8°С электрическая цепь терморегулятора должна быть замкнута. Неисправный терморегулятор подлежит замене
Неисправный электродвигатель Проверить сопротивление в обмотках электродвигателя в холодном состоянии. Рабочее сопротивление должно составлять 14...16 Ом, пусковое — 40...32 Ом. При пониженном сопротивлении в двигателе агрегат заменить. При замене терморегулятора и пускозащитного реле проверить целостность заводской пломбировки
Отсутствует охлаждение при работающем компрессоре
Утечка хладагента из системы трубопроводов агрегата Определить место утечки хладагента по наличию масляных пятен на трубопроводах агрегата или течеискателем. Проверить потребляемую мощность холодильника, При отсутствии хладагента потребляемая мощность менее 120 Вт. Если обнаружен дефект, агрегат заменить
Засорение капиллярной трубки Потребляемая мощность холодильника в течение 3...5 мин после включения составляет 150.-.165 Вт, затем падает до 120 Вт. Испаритель на входе теплый. При наличии дефекта агрегат заменить
Холодильник работает нестабильно (испаритель охлаждается и отепляется при работающем компрессоре)
Замерзание влаги в капиллярной трубке Снять перегородку, подогреть конец капиллярной трубки у входа в патрубок испарителя при работающем компрессоре. В результате нагревания будет слышно характерное шипение хладагента, входящего в испаритель, и испаритель начнет обмерзать. При наличии дефекта агрегат заменить
Холодильник работает непрерывно
Частичная утечка хладагента из системы агрегата По наличию масляных пятен на трубопроводах и с помощью течеискателя определить место утечки. При наличии дефекта агрегат заменить
Сильфонная трубка терморегулятора касается электронагревателя, расположенного на задней стенке испарителя холодильной камеры Устранить касание
На испарителе холодильной камеры постоянно нарастает снеговая «шуба»
Не работает электронагреватель на испарителе Проверить качество присоединения клемм электронагревателя и электропроводки. Проверить сопротивление электронагревателя, отсоединив клеммы от электропроводки. Сопротивление должно составлять 4000...5000 Ом. Можно подключить электронагреватель в сеть. При этом потребляемая мощность должна быть в пределах 10...12 Вт. Электронагреватель на ощупь должен отепляться
На перегородке между дверями конденсируется влага
Не работает электронагреватель в перегородке Проверить электронагреватель по методике, изложенной выше. Потребляемая мощность должна быть в пределах 5...6 Вт

 

Удачи в ремонте!

Статья подготовлена по материалам книги «Холодильники от А до Я» С.Л. Корякин-Черняк

Мы рекомендуем еще посмотреть:

Трансформаторные каскады с парафазным возбуждением

<< Назад в раздел   Распечатать   Рекомендовать

В статье представлены оригинальные варианты схем трансформаторных ламповых каскадов. Комбинации двух однотактных каскадов с парафазным возбуждением позволяют получить интересные модификации, аналогичные двухтактным каскадам. Описаны их преимущества и недостатки, приведены расчетные формулы и результаты исследования параметров.

Рассмотренные в этой статье варианты выходных каскадов ламповых усилителей ведут свою родословную от обыкновенного однотактного выходного каскада [1, 2]. Получившийся результат — явный компромисс, но каждый из вариантов описываемых схем имеет некоторые преимущества, а насколько они ценны — судите сами.

Трансформаторные каскады с параллельным питанием

Первоначально я использовал в усилителе выходной каскад по схеме, показанной на рис. 1, вынужденно, несмотря на его недостатки [3]. Фактически, его главное преимущество — отсутствие постоянного подмагничивания выходного трансформатора. Это позволяет улучшить параметры каскада за счет повышения индуктивности обмоток и (или) уменьшения паразитных параметров трансформатора.


В таком каскаде с параллельным нагрузке питанием перемагничивание магнитопровода происходит по симметричной петле. Это — "хорошо", потому что в нем не возникают четные гармоники, а допустимый размах индукции увеличивается; "плохо" потому, что при переходе индукции через ноль кривая намагничивания существенно нелинейна.

Если трансформатор работает по симметричной петле перемагничивания, ничто не мешает преобразовать каскад в двухтактный, добавив его преимущества и недостатки к уже имеющимся. Естественно, можно задать резонный вопрос: зачем это делать? Попробую ответить.

При разработке ламповых УМЗЧ получение максимально линейного, без искажений, усиления стараются достигнуть, в первую очередь, методами, позволяющими подавить нежелательную нелинейность без использования общей обратной связи. Двухтактные каскады дают такую возможность параметрическими методами без введения ООС повысить линейность мощных каскадов, используя симметрию структуры. Обсуждаемые в [4] способы подавления четных гармоник в однотактных каскадах путем подбора типов и режимов ламп менее универсальны в сравнении с двухтактной структурой. В результате доминирующими в спектре выходного сигнала являются нечетные гармоники, но их уровень на порядок меньше, чем подавленных четных, поэтому с ними гораздо легче бороться другими методами.

Однотактный каскад принципиально несимметричен. Следствием этого является то, что скорости нарастания и спада фронтов сигналов импульсного характера принципиально разные. Также это приводит к повышенному уровню фазовых искажений. В двухтактных каскадах этот недостаток менее выражен.

Схему двухтактного каскада из исходной (по рис. 1) можно получить включением нагрузки между выходами двух однотактных каскадов с параллельным питанием и, соответственно, возбуждением этих каскадов парафазным сигналом (рис. 2). Для ламп с малым напряжением смещения более удобна схема, показанная на рис. 3, так как в этом случае не требуется отдельного источника смещения. Фактически эта схема аналогична обычному дифференциальному каскаду. Нормальная работа этих каскадов возможна только в классе А.

Если лампы идентичны, то коэффициент усиления такого каскада для парафазных сигналов

K = Uвых1 / Uвх1 = Uвых2 / Uвх2 = mRн / (Ri + Rн),    (1)

где m — коэффициент усиления лампы;

Ri — ее внутреннее сопротивление;

Rн — сопротивление нагрузки, а выходное сопротивление

Ri экв = 2Ri.    (2)

Разделительный конденсатор Ср при соблюдении некоторых условий может отсутствовать, но без поддержания равных напряжений на анодах ламп использовать его необходимо. Кроме того, наличие этого конденсатора позволяет независимо и в широких пределах менять режим работы каждой лампы каскада. Появляется возможность установить режим работы каскада с желаемым уровнем четных гармоник даже для ламп с существенно разнящимися характеристиками.

В результате такой модификации достигается удвоение выходной мощности, а также компенсация четных гармоник ламп и трансформатора. Появляется возможность регулировать спектр искажений сигнала. Габариты трансформатора допустимо уменьшить или при тех же размерах улучшить его параметры. При отсутствии подмагничивания трансформатора упрощается его конструкция.

При этом, однако, потребуется более высокое напряжение питания, хотя КПД даже теоретически не превысит 25 %. Выходное сопротивление модифицированного каскада вдвое больше, а уровень нечетных гармоник выше, так как ток сигнала протекает через две лампы.

tmp238-1.jpg

Конечно, самым неприятным из недостатков являются нечетные гармоники, для подавления которых целесообразно ввести местную обратную связь в выходной каскад. Наиболее оптимально использовать здесь катодную обратную связь, как показано на рис. 4. Посмотрим, что получится при введении обратной связи на реальном примере. В соответствии с теорией обратной связи [3] уменьшение уровня гармонических составляющих Un искажений пропорционально глубине обратной связи А:

Un ос = Un / А    (3)

где Un ос — уровень n-й гармонической составляющей в усилителе с ООС.

В области средних частот вполне допустимо рассматривать не комплексные величины, а их модули, что мы в дальнейшем и будем делать.

 tmp238-5.jpg

ООС в катодной цепи лампы является последовательной обратной связью по напряжению, в этом случае коэффициент усиления Кос усилителя, охваченного обратной связью, равен:

Кос = К / (1 + ßК),    (4)

где К — коэффициент усиления усилителя без обратной связи; р — коэффициент передачи цепи обратной связи. Знаменатель выражения (4) соответствует нужной нам величине А:

А = 1 + ßK.   (5)

Для данного каскада желательно использовать лампу с максимальным усилением и минимальным уровнем третьей гармоники. Выбрав лучевой тетрод 6П1П, зададим желаемое усиление Кос = 3 (это значение в реальном усилителе обычно определяют по возможностям предоконечного каскада—фазоинвертора). Подставив величину Кос в уравнение (4), вычислим глубину обратной связи А:

А = К / Кос = 7,1 / 3 = 2,36.

Теперь в соответствии с выражением (3) пересчитаем уровни гармонических составляющих, считая, что четные гармоники скомпенсированы полностью (см. табл. 1).

Коэффициент гармоник Схема каскада
Рис.1 Рис.3 Рис.4
kr, % 5,06 0,26 0,11
kr2, % 4,96
kr3, % 0,36 0,26 0,1
kr4, % 0,08
kr5, % 0,018 0,013 0,005
kre, % 0,016

Таблица 1

Для проведения экспериментов использован выходной каскад, собранный по схеме на рис. 5 (соответствует структуре схемы на рис. 3). На рис. 6 показан спектр его выходного сигнала. Экспериментальные результаты измерения искажений отличаются от расчетных значений на 20...25 % (в сторону ухудшения). Это объясняется и неполной компенсацией четных гармоник — использованы лампы без предварительного подбора.

Линейность нового варианта усилителя существенно выше; особенно привлекателен каскад с катодной обратной связью [5, 6], в этом случае улучшаются все его параметры.

Основным ограничением при практическом использовании такого каскада является его низкая эффективность; с распространенными лампами можно получить выходную мощность до 2...3 Вт. Применение такой схемы каскада целесообразно, в первую очередь, при наличии готовых выходных трансформаторов, использовавшихся в однотактных каскадах старой радиоаппаратуры (зазор в трансформаторе следует устранить). Также она хорошо подходит для выходного каскада высококачественного телефонного усилителя, особенно если для него специально изготовлен трансформатор. На рис. 7 показан спектр выходного сигнала такого усилителя, при максимальной мощности 0,6 Вт общий коэффициент гармоник всего тракта не превышает 0,06 %.

Предложенный подход можно применить и к другим вариантам каскада с параллельным питанием, заменив источники тока в анодах ламп на дроссель с двумя магнитосвязанными обмотками. В результате введения второго моточного узла получится симметричный каскад с дроссельной нагрузкой (рис. 8) и эффективностью, достигающей уже 50 %. Перенос источников тока или дросселя в катодную цепь ламп дает симметричный катодный повторитель (рис. 9). Последний вариант схемы представляет практический интерес для применения в выходных каскадах предварительных усилителей с трансформаторным выходом, а также для телефонных усилителей.

В каскаде по схеме, показанной на рис. 4, можно с успехом использовать пентоды и лучевые тетроды, исключив резистор RK и применив фиксированное смещение.

Выходной каскад с разделенной нагрузкой

При поиске полезной модификации симметричной структуры желательно было совместить преимущества однотактного и двухтактного каскадов без их недостатков, а именно: иметь параметрическую компенсацию четных гармоник при работе магнитопровода согласующего трансформатора на частной петле перемагничивания.

В связи с этим вниманию читателей предложу новый вариант оконечного каскада с разделенной нагрузкой — с двумя выходуыми трансформаторами (рис. 10, 11). На мой взгляд, применение двух трансформаторов — допустимая цена за исключительно хорошие свойства и высокую гибкость.

 tmp238-6.jpg

Структура двухтактного каскада получается при объединении вторичных обмоток выходных трансформаторов двух однотактных каскадов и возбуждении этих каскадов парафазным сигналом. В результате благодаря парафазности работы каскада подавляются четные гармонические искажения (естественно, с учетом реального коэффициента асимметрии плеч). Его можно возбуждать от фазоинверсного каскада любого типа, в нем допускается использовать любые лампы и вводить различные виды местной обратной связи в каждое плечо как независимо, так и перекрестно. Нормальная работа усилителя возможна только в классе А.

Как видно из этих двух схем, возможны два варианта реализации каскада, существенно отличающиеся по свойствам. Если по постоянному току в обоих вариантах лампы включены параллельно, то по переменному току включение ламп зависит от того,-как соединены вторичные обмотки выходных трансформаторов и как подключена к ним нагрузка.

В усилителе два выходных трансформатора, и их магнитопроводы работают в частной петле перемагничивания. Искушенный читатель скажет — это недостаток. Да, с позиций уменьшения стоимости, габаритов конструкции и сложности это так, но если во главу угла ставится вопрос качества — это достоинство.

Во-первых, устраняется переход индукции в трансформаторе через ноль и, соответственно, характерные нелинейности трансформатора на малых уровнях сигнала. Во-вторых, токи покоя в плечах каскада можно установить различными сознательно, чтобы иметь возможность регулировать уровень четных гармоник в выходном сигнале и использовать лампы с большим разбросом характеристик.

 Таблица 2
Эквивалентные параметры генератора и нагрузки Формулы для эквивалентной схемы включения
последовательное параллельное
м« и
Se S 2S
Ri, 2R: 0,5Ri
Сопротивление нагрузки, приведенное между анодами ламп Z'H n2ZH n2ZH
Сопротивление нагрузки, приведенное к аноду лампы плеча Z'H 0,5n2ZH 2n2ZH
 

Таблица 3

Нелинейные искажения по гармоникам Значения уровня гармоник, %, по схеме
рис.1 1) рис. 1 2) рис. 1 2) рис. 1 2)
kr2, % 4,96 0,12 0,29 0,019
Кгз, % 0,36 0,47 0,44 0,42
КГ4, % 0,08 0,013 0,03 0,004
krs, % 0,018 0,014 0,014 0,024
kre, % 0,016 0,003 0,014 0,004
Кгт, % 0 0,003 0,0046 0
kr, % 4,97 0,49 ' 0,53 0,43

1) При выходной мощности 1 Вт.

2) При выходной мощности 2 Вт.

 

Отличием от обычного двухтактного каскада является и место, где происходит компенсация четных гармоник. В классическом двухтактном усилителе компенсация происходит в магнитном поле выходного трансформатора; а в таком комбинированном каскаде — непосредственно на сопротивлении нагрузки. Для получения основных расчетных соотношений и лучшего уяснения свойств каскадов представим их в виде эквивалентных схем, предположив, что лампы и трансформаторы одинаковы. Для этого представим лампы как эквивалентный источник ЭДС Е с выходным сопротивлением R, или как эквивалентный источник тока I, зашун-тированный сопротивлением Ri:

Е = - mUc;     I = - SUc ,     (6)

где ц — коэффициент усиления лампы; S — крутизна лампы; Uc — напряжение на управляющей сетке лампы; R, - выходное сопротивление лампы.

Каскаду, показанному на рис. 10, соответствует эквивалентная схема на рис. 12,а, а каскаду на рис. 11 — 13,а. Дальнейшее упрощение приводит к схемам, изображенным на рис. 12,б, 13,б, 13,в соответственно.

В схеме, показанной на рис. 10, лампы соединены по переменному току последовательно — назовем этот каскад последовательным (с общим током по вторичным обмоткам). В схеме на рис. 11 лампы и по переменному току соединены параллельно нагрузке, назовем этот каскад параллельным (с общим напряжением на вторичных обмотках). Из полученных эквивалентных схем достаточно просто получить основные расчетные соотношения [7], которые сведены в табл. 2.

Выбор типа каскада во многом зависит от используемых ламп. Для выходных ламп с относительно большим выходным сопротивлением и высоким ц целесообразно использовать параллельный каскад. Для мощных выходных триодов может быть целесообразным использование последовательного каскада. Так как в этом случае це вдвое больше, это облегчает возбуждение выходных ламп. В симметричных каскадах с разделенной нагрузкой можно с успехом использовать стандартные выходные трансформаторы, предназначенные для однотактных каскадов.

Обратная связь в каскаде с разделенной нагрузкой

Небольшая модификация последовательного каскада, показанная на рис. 14, позволяет улучшить его общие параметры. Перенос выходных обмоток и нагрузки в цепи катодов ламп дает ряд преимуществ.

Возрастает общая индуктивность намагничивания, так как последовательно с первичной обмоткой дополнительно включается выходная. Выходной трансформатор становится автотрансформатором, что в общем случае позволяет уменьшить его габариты. В этом каскаде можно использовать стандартные трансформаторы без дополнительной обмотки.

Кроме того, в катодной цепи каскада появляется местная обратная связь с соответствующим изменением параметров каскада. Конечно, используя стандартные трансформаторы, мы не можем произвольно регулировать глубину этой обратной связи, но зато она '"бесплатная". Здесь перспективно использование трансформаторов с большим числом отводов на вторичной обмотке, тогда катоды ламп подключают к выводам, предназначенным для наиболее высокоомной нагрузки, а фактическую нагрузку, в зависимости от ее сопротивления, к одноименным промежуточным отводам.

В каскаде по этой схеме постоянная составляющая напряжения на нагрузке практически очень мала. Это обусловлено низким активным сопротивлением выходных обмоток (не более нескольких ом) и фактической разницей тока покоя ламп. Практически это напряжение не превышает 5...15 мВ.

Еще одним побочным результатом такого включения нагрузки является дифференциальный выход, хотя последовательный вариант каскада также обеспечивает это свойство.

Как было сказано выше, в каскадах с разделенной нагрузкой можно использовать любые типы ламп и различные типы местной обратной связи. В качестве примера на рис. 15 показано включение пентодов с катодной обратной связью, а на рис. 16 и 17 — варианты ультралинейного включения (лучевых тетродов) пентодов [8, 9]. Благодаря местной обратной связи в каскаде с экранированными лампами можно существенно повысить линейность характеристик ламп и трансформаторов.

Проверка теоретических предположений проведена на трех макетах, собранных по схемам, показанным на рис. 10, 11 и 14. Базовый однотактный каскад на лампе 6П1П соответствует схеме, показанной на рис. 1; во всех случаях использовались одни и те же лампы и выходные трансформаторы. Сопротивление нагрузки и режим ламп были выбраны исходя из получения минимального уровня гармоник при заданной мощности. Численные результаты измерений приведены в табл. 3, а спектры выходного сигнала — на рис. 18—21 соответственно.

Как видно из результатов, даже использование случайно выбранных ламп и трансформаторов позволяет резко снизить уровень четных гармоник и повысить линейность каскада. Спектр выходного сигнала трансформаторного каскада с разделенной нагрузкой подобен спектру обычного двухтактного каскада. Наилучшие результаты, как и предполагалось, обеспечивает каскад, охваченный местной обратной связью, эффективно снижающей нечетные гармоники искажений.

ЛИТЕРАТУРА

1. Лзнди Р., Девис Д., Албрехт А. Справочник радиоинженера. — М.: ГЭИ, 1961.

2. Карпов Е. ТВЗ в ламповом УМЗЧ. — Радио, 2003, № 4, с. 11—15.

3. Inverse Complementary Distortion Cancellation, Glass Ware, 2001.

4. Войшвилло Г. В. Усилители низкой частоты на электронных лампах. — М.: Связь-издат, 1963.

5. Вилльямсон Т. Н., Волкер П. Д. Преувеличения и Усилители, 1955. Перевод с англ. — Интернет-издание: Nextube, <http://www.next-power.net/next-tube/ru/articles.php3>.

6. Mclntosh F. H. Wide-Band amplifier coupling circuit, US Patent 2,477,074.

7. Бессонов Л. А. Теоретические основы электротехники. — М.: Высшая школа, 1978.

8. Hafler D., Keroes H. I. Ultra Linear Amplifiers, US Patent 2,710,312.

9. Menno van der Veen. Новые схемы двухтактных ламповых усилителей мощности, 1999. — Перевод с англ. — Интернет-издание: Nextube, <http://www.next-power.net/ next-tube/ru/articles.php3>.

инвестиционные фонды частные инвестиции рейтинг пифов управление активами

Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.