назад

- на главную
- к оглавлению рубрики

ремонт

- импортных
  холодильников

- отечественных
  стиральных машин
- импортных стиральных
  машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

Оглавление.

  1. Корпус.
  2. Внутренние шкафы холодильников
  3. Двери.
  4. Теплоизоляция.
  5. Затворы и уплотнители дверей.

Корпус.

Является несущей конструкцией, поэтому должен быть достаточно жестким. Его изготавливают из листовой стали толщиной 0,6-0,1 мм. Герметичность наружного шкафа обеспечивается пастой ПВ-3 на основе хлорвиниловой смолы. Поверхность шкафа фосфатируют, затем грунтуют и дважды покрывают белой эмалью МЛ-12-01, ЭП-148, МЛ-242, МП-283 или др. Выполняют это с помощью краскопультов или в электростатическом поле. Поверхность сервировочного столика, если таковой имеется, покрывают полиэфирным лаком.

В холодильниках «Снайге-2», «Ладога-40». «Садко» (бар) и других шкаф изготовлен из древесностружечной плиты, покрытой шпоном твердолиственных пород, полиэфирным лаком или декоративной пленкой. В термоэлектрических холодильниках ХАТЭ-12 наружный корпус выполнен из листового полистирола методом вакуум-формирования.

В последнее время для изготовления корпуса холодильника все чаще применяют ударопрочные пластики. Благодаря этому сокращается расход металла и уменьшается масса холодильного прибора.

Внутренние шкафы холодильников.

Металлические внутренние шкафы из стального листа толщиной 0,7-0,9 мм изготавливают методом штамповки и сварки и эмалируют горячим способом силикатно-титановой эмалью.

Пластмассовые камеры изготавливают из АБС-пластика или из ударопрочного полистирола методом вакуум-формирования. АБС (акрилбутадиеновый стирол) обладает высокими механическими свойствами и стойкостью по отношению кхладону (фреону). Детали из АБС-пластика, покрытые хромом и никелем, широко применяются в декоративных целях. АБС-пластики отечественного производства по физико-механическим свойствам делятся на четыре группы: АБС-0903 средней ударной вязкости; АБС-1106Э, АБС-1308, АБС-1530, АБС-2020 повышенной ударной вязкости; АБС-2501К, АБС-2512Э, АБС-2802Э высокой ударной вязкости; АБС-0809Т, АБС-0804Т, АБС-1002Т повышенной теплостойкости. АБС- пластики выпускаются в виде гранул диаметром не более 3 мм и длиной 4-5 мм или в виде порошка и перерабатываются литьем под давлением, выдуванием, термоформованием.

Камеры у морозильников и камеры низкотемпературных отделений холодильников металлические — из алюминия или нержавеющей стали. Стальные камеры более долговечны, гигиеничны, но они увеличивают массу холодильника и требуют особых способов крепления к наружному корпусу для наиболее эффективной теплоизоляции от окружающей среды.

К преимуществам пластмассовых камер относятся технологичность изготовления, малый коэффициент теплопроводности, меньшая масса. Однако такие камеры быстрее стареют, со временем теряют товарный вид, менее долговечны и менее прочны по сравнению с металлическими. В холодильниках с пластмассовыми камерами по периметру дверного проема не устанавливают накладки, закрывающие теплоизоляцию, так как роль накладок выполняют отбортованные края камеры.

Двери.

Изготовляют из стального листа толщиной 0,8 мм методом штамповки и сварки. В некоторых моделях холодильников двери изготовлены из древесностружечной плиты или ударопрочного полистирола.

Дверь холодильника состоит из наружной и внутренней панелей, теплоизоляции между ними и уплотнителя. Панели двери изготовляют из ударопрочного полистирола методом вакуум-формования. Толщина листа 2-3 мм. У большинства холодильников двери открываются слева направо. В холодильниках повышенной комфортности предусмотрена перенавеска двери, т.е. возможность открывания двери справа налево. У настенных холодильников дверь двухстворчатая.

Дверь холодильника должна плотно прилегать к дверному проему, иначе теплый воздух будет проникать в камеру. Для обеспечения герметичности внутреннюю сторону двери по всему периметру окантовывают магнитным уплотнителем разного профиля. В холодильниках старых конструкций применялись резиновые уплотнители баллонного типа.

Двери в закрытом положении удерживаются с помощью механических (чаще куркового типа) или магнитных затворов. Последние наиболее распространены. При их наличии ручку двери можно расположить на разной высоте, исходя из требований технической эстетики. Замена дверных петель специальными навесками, укрепляемыми сверху и снизу двери, уменьшает общие габариты холодильника при открывании двери, что важно при установке холодильников в углу помещений.

Теплоизоляция.

Теплоизоляцию применяют для защиты холодильной камеры от проникновения тепла окружающей среды и прокладывают по стенкам, верху и дну холодильного шкафа и холодильной камеры, а также под внутренней панелью двери. От теплоизоляционных материалов требуется, чтобы они обладали низким коэффициентом теплопроводности, небольшой объемной массой, малой гигроскопичностью, влагостойкостью, были огнестойкими, долговечными, дешевыми, биостойкими, не издавали запаха, а также были механически прочными. Для теплоизоляции шкафа и двери холодильников применяют штапельное стекловолокно МТ-35, МТХ-5, МТХ-8, минеральный войлок, пенополистирол ПСВ и ПСВ-С и пенополиуретан ППУ-309М.

Минеральный войлок изготовляют из минеральной ваты путем обработки ее растворами синтетических смол. Исходным сырьем для получения минеральной ваты служат минеральные породы (доломит, доломитоглинистый мергель), а также металлургические шлаки.

Стеклянный войлок — разновидность искусственного минерального войлока. Он состоит из тонких (толщина 10-12 мк) коротких стеклянных нитей, связанных синтетическими смолами. Теплоизоляция из стеклянного войлока и супертонкого волокна биостойка, не имеет запаха, обладает водоотталкивающим свойством, удобно укладывается и поэтому часто применяется.

Пенополистирол — синтетический теплоизоляционный материал. Он представляет собой легкую твердую пористую газонаполненную пластмассу с равномерно распределенными замкнутыми порами. Теплоизоляцию из пенополистирола получают вспениванием жидкого полистирола непосредственно в простенках холодильной камеры и корпуса шкафа холодильника.

Пенополиуретан — пенопласты мелкопористой жесткой структуры, полученные путем вспучивания полиуретановых смол с применением соответствующих катализаторов и эмульгаторов. Для повышения теплозащитных свойств в качестве вспучивающего газа применяют хладон-11 и др. Процесс ценообразования и затвердевания пены происходит в течение 10-15 мин при температуре до 5°С.

Пенополиуретан обладает малой объемной массой, низким коэффициентом теплопроводности, влагостоек. Его можно вспенивать непосредственно в холодильном шкафу. При этом он равномерно и без воздушных полостей заполняет все пространство в простенках, хорошо склеивается со стенками, повышая прочность шкафа.

В зависимости от качества теплоизоляционных материалов толщина изоляции в стенках шкафа холодильника может быть от 30 до 70 мм, в двери — от 35 до 50 мм. Замена теплоизоляции из стекловолокна изоляцией из пенополиуретана позволяет при одних и тех же габаритах корпуса увеличить объем холодильника на 25%.

Затворы и уплотнители дверей.

Ранее в холодильниках применялись курковые и секторные затворы дверей.

Курковый затвор.

Курковый затвор:

Рис. 1. Курковый затвор:

1 — личинка: 2 — ролик: 3 — рычаг спуска: 4 — перекидная пружина: 5 — рычав перекидной пружины: 6 — корпус затвора: 7 — ось рычага спуска; 8 — упорная площадка

 

В курковых затворах запорной частью служит ролик 2 (рис. 1) на оси 7, закрепленной на рычаге спуска 3. Перемещение рычага спуска с роликом при открывании и закрывании двери происходит под действием перекидной пружины 4, закрепленной на рычаге 5, один конец которого шарнирно соединен с рычагом спуска, а другой — с корпусом 6 затвора. Угловое перемещение рычага спуска происходит при нажатии на упорную площадку 8.

Открывают дверь ручкой, которая связана с рычагом спуска. При оттягивании ручки на себя рычаг спуска занимает открытое положение, выводя ролик затвора из зацепления с личинкой 1, закрепленной в шкафу. При этом рычаг спуска оказывается во взведенном (как курок) состоянии и готов к закрытию при малейшем нажатии на его упорную площадку. При закрывании двери, когда площадка 8 рычага спуска коснется выступа личинки, рычаг спуска под действием пружины займет закрытое положение, а ролик затвора зайдет за личинку.

Курковый затвор надежен в работе, но дверь с курковым затвором нельзя открыть изнутри, что противоречит требованиям стандартов.

Секторный затвор.

Секторный затвор:

Рис. 2. Секторный затвор:

1 — личинка: 2 — ролик личинки; 3 — запорный сектор: 4 — ось запорного сектора; 5 — перекидная пружина:
6 — корпус затвора; 7 — рычаг перекидной пружины

Секторный затвор отличается от куркового тем, что его запорная часть, имеющая вид сектора, перебрасывается пружиной в открытое и закрытое положения, не будучи связанной с ручкой двери. Запорный сектор 3 (рис. 2) затвора закреплен на оси 4 и связан с пружиной 5, надетой на рычаг 7. В закрытом положении паз запорного сектора входит в зацепление с роликом 2, надетым на ось в личинке 1, закрепленной в шкафу. Положение личинки можно регулировать для того, чтобы при закрывании двери было обеспечено надежное зацепление. Перекидная пружина 5 перебрасывает через рычаг 7 запорный сектор 3 при открывании и закрывании двери.

Секторный затвор позволяет открывать дверь снаружи и изнутри без нажима на ручку, которая жестко закреплена на двери.

Магнитный затвор.

Магнитные затворы представляют собой эластичную магнитную вставку, помещенную в уплотнительный профиль на внутренней панели двери. При закрывании двери она плотно притягивается к металлическому корпусу. Исходным сырьем для получения магнитных материалов служит феррит бария ВаО в смеси с каучуками или поливиниловыми и другими смолами, придающими ему гибкость. Изготовленные ленты эластичного магнита намагничивают в магнитном поле. Намагниченные ленты обладают остаточной магнитной индукцией 0,11-0,12 Т.

Притягивая уплотнитель к шкафу по всему периметру, магнитный затвор обеспечивает хорошее уплотнение и в то же время не требует усилий для открывания двери, которое необходимо проверять динамометром с погрешностью +1 Н. Динамометр прикрепляют к ручке на расстоянии, наиболее отдаленном от шарниров. Усилие при этом должно быть направлено перпендикулярно плоскости двери.

Уплотнители

Для дверных уплотнителей в холодильниках с курковыми и секторными затворами применяют пищевую резину, с магнитными затворами — поливинилхлоридные и полихлорвиниловые уплотнители с магнитной вставкой и магнитные уплотнители с дополнительными удерживателями. Для эффективной работы уплотнителя верхняя полка 1 (рис. 3) должна под действием перпендикулярно приложенной к ней силы прогибаться без бокового заваливания.

 

Резиновый баллонный уплотнитель

Рис. 3. Резиновый баллонный уплотнитель:

1 — верхняя попка: 2 — баллон: 3 — канавки; 4 — вертикальная стенка; 5 — выступ; 6 — карман; 7 — нижняя
полка; 8 — край верхней полки

 

Такое положение создается благодаря правильному соотношению толщин всех стенок, особенно вертикальной стенки 4 и верхней полки, а также благодаря канавкам 3 внутри баллона 2. Для хорошего прилегания уплотнителя к двери (чтобы препятствовать поступлению теплого воздуха из помещения в теплоизоляцию двери) на нижней полке 7 делают рифление и выступ 5, который при креплении уплотнителя плотно прижимается к двери. Для укрытия головок шурупов, которыми крепят уплотнитель, предусмотрен карман 6, закрываемый краем 8 верхней полки. Таким образом, в холодильниках с механическим затвором плотное закрывание двери достигается благодаря сжатию профиля резинового уплотнителя.

Уплотнитель с магнитной вставкой

Рис. 4. Уплотнитель с магнитной вставкой:

1 — магнитная вставка; 2— баллон для магнитной вставки: 3—баллон «гармошка»

В холодильниках с магнитным затвором уплотнитель притягивается к шкафу силой притяжения магнита, при этом профиль уплотнителя растягивается. Уплотнитель имеет два баллона. Баллон 2 (рис. 4) прямоугольного сечения, в котором находится магнитная вставка 1, прижимается передней плоскостью к шкафу. Толщина стенки баллона существенно влияет на силу притяжения уплотнителя и не превышает 0,45 мм. Баллон «гармошка» 3 служит для компенсации небольшого свободного хода двери. В свободном состоянии уплотнителя «гармошка» несколько сжата и при отходе двери растягивается, препятствуя отрыву уплотнителя от шкафа. Для эффективной работы профиль баллона «гармошка» имеет небольшое сопротивление растяжению, что обеспечивается тонкими стенками баллона, а также соответствующей конфигурацией его.

Магнитные вставки узлов уплотнения делают прямоугольного сечения. Их изготовляют из эластичных многокомпонентных ферритонаполненных композиций. Улучшить магнитные, физико-химические и термомеханические свойства, а также технико-экономические показатели магнитных эластичных вставок стало возможным благодаря использованию новых полимерных композиций на основе сополимеров ЭВА.

Уплотнение двери следует проверять, не включая холодильник в сеть. Бумажная полоска шириной 50 мм и толщиной 0,08 мм, заложенная между уплотнителем двери и закрываемой поверхностью шкафа, ни в одном месте не должна свободно перемещаться.

Статья подготовлена по материалам книги издательства СОЛОН-Пресс Серии  Ремонт №35 «Ремонт холодильников» Д. А. Лепаев, В. В. Коляда 2005

Мы рекомендуем еще посмотреть:

Бестрансформаторное зарядное устройство

<< Назад в раздел   Распечатать   Рекомендовать

    Предлагаю маломощное зарядное устройство (ЗУ) с гасящим конденсатором (рис.1). Оно предназначено для зарядки аккумуляторов с максимальным выходным током 140 мА и напряжением до 20 В. Транзисторная пороговая схема позволяет установить зарядное напряжение 13,8...14,4 В (для аккумуляторов - 12,6 В), при котором происходит отключение зарядного тока, т.е. предотвращается перезаряд аккумулятора. Этому способствует и постепенное снижение зарядного тока при увеличении напряжения на аккумуляторе.

Принципиальная схема зарядного устройства

Рис.1. Принципиальная схема зарядного устройства

    В схеме ЗУ особое внимание уделено безопасности. Фазовый провод "Ф" сети 220 В присоединен через предохранитель и ограничитель пусковых токов R1 к гасящему конденсатору С1, другой вывод которого и нулевой провод сети "0" присоединены к конденсаторному делителю напряжения.

    Через диодный мост VD1...VD4 напряжение с конденсаторов С2, СЗ подведено к ключевой схеме на VT1...VT3. Резистор R7 - шунт индикатора тока заряда VD5. Зарядный ток в виде широких импульсов частотой 100 Гц поступает через ключ VT1 и диод VD7 в аккумулятор. В паузах между зарядными импульсами аккумулятор разряжается для десульфатации через пороговую схему на VT3 и VD6.

    Резистором R12 устанавливают максимальное напряжение заряда аккумулятора. При его достижении открывается транзистор VT3, a VT2, VT1 закрываются, ток заряда прекращается, и гаснет зеленый светодиод VD5, индицирующий заряд. Через некоторое время из-за саморазряда напряжение на аккумуляторе уменьшается, и пороговый триггер на VT2, VT3 вновь включает зарядный ток, открывая VT1. Мигание VD5 с периодом около 5 с показывает заряженное состояние аккумулятора. В таком режиме аккумулятор может питать звонковую цепь или люминесцентную лампу дежурного освещения. При теперешних "веерных" отключениях это немаловажное свойство ЗУ.

    Наиболее ответственная деталь ЗУ - конденсатор С1. Здесь можно использовать 2 конденсатора типа К73-14 (1 мкФ х 400 В) или 4 К73-17 (0,47 мкФ х 630 В), соединенных параллельно. Электролитические конденсаторы С2, СЗ - К50-35 (22 мкФ х 63 В). Импортные "электролиты" применять нежелательно, т.к. они обладают большими потерями при перезарядке.

    Диоды VD1...VD4 можно применить любые с Uoбp > 100 В и Imax > 200 мА. Неплохо работают КД103А и 1N4007. Транзисторы - с Uкэ > 80 В.

    При первом включении ЗУ нужно установить движок регулятора R12 в нижнее по схеме положение. Должен светиться зеленый светодиод VD5. В процессе работы стоит проверить отсутствие нагрева VT1. Устранить перегрев можно уменьшением сопротивления R9 или заменой VT1, VT2 на транзисторы с большим β.

    При достижении U = 13,8 В вращением R12 нужно выключить зарядный ток.

    Подключать ЗУ к сети 220 В следует с применением индикаторной отвертки или неоновой лампочки ТН-0,2 с резистором 240 кОм (0,5 Вт) для определения фазного провода в розетке.

    Для зарядки 6-вольтовых аккумуляторов стабилитрон VD6 нужно заменить на КС133 или КС147.

    При отключении аккумулятора от ЗУ напряжение на выходе ЗУ (катод VD7) равно нулю. Относительно нулевого провода сети оба выходных провода ЗУ имеют потенциал около 30 В. Замыкание выходных проводов ЗУ не выводит его из строя, т.к. максимальный ток ограничен С1 на уровне 140 мА.

Источники

  1. О.Ховайко. Источники питания с конденсаторным делителем напряжения. - Радио, 1997, N11, С.56.
  2. А.Сорокин. Зарядно-десульфатирующий автомат. - Радиолюбитель, 1998, N10, С.30.
  3. А.Трифонов. Выбор балластного конденсатора. - Радио, 1999, N4, С.44.
  4. С.Бирюков. Расчет сетевого источника питания с гасящим конденсатором. - Радио, 1997, N5, С.48.
  5. С.Бирюков. Цифровые устройства на ИМС, 1999.
  6. Р.Левицкий. Об использовании конденсаторов в цепях переменного тока. - Радио, 1969, N8, С.49.
  7. Импульсное зарядное устройство. - Радио, 1995, N8, С.61.

Автор: Ю.Семенов, г.Воронеж

Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.