назад

- на главную
- к оглавлению рубрики

ремонт

- импортных
  холодильников

- отечественных
  стиральных машин
- импортных стиральных
  машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

Общие сведения.

Эффект термоэлектрического охлаждения, открытый французским физиком Ж. Пельтье в 1834г., заключается в том, что при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте их соединения выделяется или поглощается некоторое количество теплоты, которое пропорционально силе тока.

Тепловой поток, называемый теплотой Пельтье, определяется по уравнению

Qп = p I,  где

 p — коэффициент Пельтье;

 I — сила тока.

Выделение или поглощение теплоты Пельтье зависит от направления тока и термотока, который возник бы при нагревании места соединения проводников. При совпадении направления тока в проводниках теплота Пельтье поглощается, а в противном случае выделяется. Если спаев несколько, выделение теплоты на одном спае всегда сопровождается поглощением ее на другом, и наоборот.

Причина возникновения эффекта Пельтье состоит в том, что средняя энергия, электронов, участвующих в переносе тока из одного проводника в другой, различна. Это наглядно подтверждается на примере контакта электронного полупроводника и металла.

Предположим, что направление тока соответствует направлению перехода электронов из полупроводника в металл. Так как энергетический уровень свободных электронов полупроводника значительно выше уровня свободных электронов металла, при переходе из полупроводника в металл электроны, сталкиваясь с атомами металла, отдают им свою избыточную энергию.

Это приводит к выделению теплоты Пельтье и повышению температуры спая. При противоположном направлении тока весь процесс идет в обратном направлении и теплота Пельтье поглощается.

Долгое время эффект термоэлектрического охлаждения не находил практического применения из-за отсутствия достаточно эффективных материалов термоэлементов, и только после ряда открытий в области полупроводниковой техники появилась возможность эффективно использовать это явление на практике.

Холодильники с термоэлектрическим охлаждением не имеют движущихся и трущихся частей, бесшумны в работе, позволяют точно регулировать температуру, надежны.

Термоэлектрические холодильники в основном применяются в автотранспорте. Их технические характеристики приведены в табл. 1.

Таблица 1. Техническая характеристика термоэлектрических холодильников
Параметр ХАТЭ-12 ХАТЭ-12М ХАТЭ-24 У4 «Холодок» ХТЭП-13,8ПР
Номинальное напряжение, В 12 12 24 12 12
Потребляемая мощность:
в основном режиме
во вспомогательном режиме
в режиме нагрева

50


65
30

170


35
25
40

45
30
50
Разность температур окружающей среды и в холодильной   камере, °С 18 19 28 26 26
Температура в камере в режиме нагрева, °С 60 60
Объем холодильной камеры, дм3 12 12 8 9,2 13,8
Габаритные размеры, мм 390х480х260 410х500х280 580х260х360 326х237х380 316х322х394
Масса, кг 6 7 15 6 6,8

 

      Принципиальная схема бытового термоэлектрического холодильника показана на рис. 1а.

Схема термоэлектрического холодильника (а) и схема работы термоэлемента (б)

Рис. 1. Схема термоэлектрического холодильника (а) и схема работы термоэлемента (б)

 

Термобатарея, состоящая из двух различных полупроводниковых термоэлементов n и р, размещается в толщине одной из стенок холодильной камеры так, чтобы холодные спаи были обращены в холодильную камеру, а горячие — в более теплую окружающую среду. Спаи термоэлементов выполняются в виде коммутационных пластин, хорошо проводящих электрический ток. Эти пластины обычно соединяются с ребристыми радиаторами которые увеличивают поверхность и, следовательно, интенсивность передачи тепла холодным спаям из холодильной камеры и от горячих спаев в окружающую среду.

К конечным элементам термобатареи подключается источник постоянного тока. При этом в зависимости от назначения холодильника в качестве источника постоянного тока может служить электрический аккумулятор (батарея) или генератор постоянного тока. В стационарных условиях эксплуатации постоянный ток питания термобатареи получается обычно с использованием выпрямителя, подключаемого к сети переменного тока.

При направлении постоянного тока, указанном на рис.1.б стрелками, ток со стороны холодных спаев термобатареи оказывается направленным от термоэлемента n к термоэлементу р, а со стороны горячих спаев наоборот— от р к n. Разность направления движения зарядов постоянного тока через два термоэлемента из различных материалов и вызывает перепад температур на их концах.

Если направление постоянного тока изменить на противоположное, то в верхних спаях термобатареи ток будет идти от р к n и они будут уже нагреваться, а не охлаждаться, как ранее. Таким образом, изменяя направление питающего постоянного тока, можно легко изменить режим работы термобатареи с охлаждения на нагревание воздуха в среде ограниченного объема.

Аппарат термоэлектрического охлаждения представляет собой батарею (рис. 2, а) состоящую из отдельных последовательно спаянных между собой полупроводниковых термоэлементов. Термоэлемент (рис. 2, б) имеет два полупроводника в виде прямоугольных или цилиндрических брусков. Один из полупроводников сделан из сплава свинца и теллура другой — из сплава теллура и сурьмы. Применяются также сплавы висмута и селена.

Аппарат термоэлектрического охлаждения

Рис. 2. Аппарат термоэлектрического охлаждения:

а — термобатарея; б — термоэлемент

Полупроводники последовательно соединены спаянными с ними медными пластинками. При прохождении постоянного тока через спаи одни из них (верхние или нижние в зависимости от направления тока) будут поглощать, а другие выделять некоторое количество тепла. Таким образом, тепло переносится электрическим током, т.е. движущимися электронами.

Холодильник ХАТЭ-12М

Холодильник состоит из корпуса 1 (рис. 3, а), крышки 2 и соединительного шнура 10. Для подключения холодильника к источникам электроэнергии автомашин различных марок применяют переходное устройство, которое надевают на вилку соединительного шнура. В крышку вмонтированы вентилятор и термоохлаждающий агрегат 6, состоящий из радиатора 7 тепла и радиатора 9 холода. Вентилятор состоит из электродвигателя 5, на концах вала которого закреплены крыльчатки 3 и 8.

Холодильник ХАТЭ-12М

Рис. 3. Холодильник ХАТЭ-12М:

а — общий вид: 1 — корпус: 2 — крышка; 3, 8— крыльчатки; 4 — резистор; 5 — электродвигатель; 6 — термоохпаждающий агрегат; 7 — радиатор тепла; 9 — радиатор холода; 10 — соединительный шнур; 11 —переключатель

б — электрическая схема: М—электродвигатель: S —выключатель; R — резисторы; G — источник питания

 

С помощью переключателя 11, расположенного на крышке холодильника, меняют один режим на другой: в одном случае напряжение подается через резистор 4, а в другом — термоагрегат непосредственно присоединяется к источнику питания.

Термоэлектрическая батарея, включенная в электросеть постоянного тока напряжением 12 В, создает перепад температур между рабочими поверхностями. Крыльчатка 3 (при включенном электродвигателе) охлаждает радиатор тепла, а крыльчатка-8 перемешивает воздух в холодильной камере.

Электрическая схема холодильника показана на рис.3, б. В комплект поставки холодильника входят две загрузочные сетки, два ключа, переходное устройство.

Холодильник ХАТЭ-24 У4

Этот холодильник устанавливают в кабине грузовых автомобилей. Он предназначен для охлаждения и краткосрочного хранения пищевых продуктов и напитков.

Снаружи корпус холодильника выполнен из листовой стали и покрыт искусственной кожей черного цвета. Изнутри корпус сделан из пищевого алюминия. Теплоизоляция - формованный пенополистирол. Крышка холодильника может служить подлокотником.

Холодильники «Холодок» и ХТЭП-13,8ПР

Эти переносные холодильники предназначены для эксплуатации в автомобилях. Холодильник выполнен в виде ларя с ручкой для переноса. Холодильная камера металлическая оснащена ложементом, который предотвращает перемещение крупной тары (бутылок) в частично заполненном холодильнике. В основании холодильника имеется место для укладки соединительного шнура.

Холодильник имеет три режима работы: основной, вспомогательный и нагрева. При основном режиме работы разность температур окружающей среды и в холодильной камере 26°С, при температуре окружающей среды 32 °С.

Вспомогательный режим работы рекомендуется использовать с целью уменьшения потребляемой мощности, а также для эксплуатации холодильника при окружающей температуре воздуха 25°С и ниже во избежание замораживания продуктов. В режиме нагрева температура внутри камеры достигает 70°С.

В камере установлен датчик температуры. При достижении температуры 70°С холодильник отключается. Переход с основного режима охлаждения на вспомогательный осуществляют вручную переключателем режимов, а переход в режим нагрева — изменением полярности питающего напряжения. В случае выхода из строя электровентилятора холодильник автоматически отключается.

Термоэлектрические холодильники «Холодок» и ХТЭП-13.8ПР в отличие от термоэлектрического холодильника ХАТЭ-12М имеют температуру внутри холодильной камеры на 6°С ниже, а удельную потребляемую мощность (отношение потребляемой мощности к объему холодильной камеры и перепаду температур) — на 45% меньше. Кроме того, они работают в режиме нагрева.

В отличие от зарубежных термоэлектрических холодильников температура внутри холодильной камеры описываемых холодильников ниже в среднем на 5 °С, а средняя потребляемая мощность — на 10%.

 

Статья подготовлена по материалам книги издательства СОЛОН-Пресс Серии  Ремонт №35 «Ремонт холодильников» Д. А. Лепаев, В. В. Коляда 2005

Мы рекомендуем еще посмотреть:

Радиомикрофон с широкополосной ЧМ в диапазоне частот 65-108 МГц

<< Назад в раздел   Распечатать   Рекомендовать

Радиомикрофон, принципиальная схема которого приведена на рис. 1, работает в диапазоне частот 65-108 МГц с широкополосной частотной модуляцией. Это позволяет принимать сигнал с радиомик-рофона на обычный ЧМ приемник этого диапазона. Дальность дейст-вия достигает 150-200 м. Продолжительность работы с батареей типа "КРОНА" - около 10 ч. Низкочастотные колебания с выхода микрофона Ml (типа МКЭ-3, М1-Б2 "Сосна" и им подобных) через кон-денсатор С1 поступают на усилитель звуковой частоты, выполненный на транзисторе VT1 типа КТ315. Усиленный сигнал звуковой частоты, снимаемый с кол-лектора транзистора VT1, через дроссель Др1 воздействует на варикап VD1 (типа КВ109А), который осуществляет частотную модуля-цию радиосигнала, сформированного высокочастотным генератором. Генератор ВЧ собран на транзисторе VT2 типа КТ315.

Частота этого генератора зависит от параметров контура L1, СЗ, С4, С5, С6, VD1. Сигнал ВЧ, снимаемый с коллектора транзистора VT2, усиливается усилителем мощности на транзисторе VT3 типа КТ361. Усилитель мощно-сти имеет гальваническую связь с задающим генератором. Уси-ленное высокочастотное напряжение выделяется на дросселе Др2 и поступает на П-образный контур, выполненный на элементах С11, L2, С10. Последний настроен на пропускание основного сигнала и подавление множества гармоник, возникающих на коллекторе тран-зистора VT3. Радиомикрофон собран на плате размером 30х70 мм. В качестве антенны используется отрезок монтажного провода длиной 25 см. Все детали малогабаритные. Резисторы - типа МЛТ-0,125, конденсаторы - К50-35, КМ, КД. Вместо варикапа VD1 типа КВ109А можно использовать варикапы с другим буквенным индексом или варикап типа KB 102. Транзисторы могут иметь любой буквенный индекс. Транзисторы VT1 и VT2 можно заменить на КТ3102, КТ368, а транзистор VT3 - на КТ326, КТ3107, КТ363. Дроссели Др1 и Др2 намотаны на резисторах МЛТ 0,25 сопро-тивлением более 100 кОм проводом ПЭВ 0,1 по 60 витков каждый. Катушки L1 и L2 бескар-касные, диаметром 5 мм. Катушка L1 - 3 витка, катушка L2 - 13 витков провода ПЭВ 0,3. Настройка сводится к установке частоты задающего генератора, со-ответствующей свободному участку УКВ ЧМ диапазона, изменением емкости подстроечного конденсатора. Растяжением или сжатием вит-ков катушки L2 на-страивается передатчик на максимальную мощность ВЧ сигнала.

Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.