назад

- на главную
- к оглавлению рубрики

ремонт

- холодильников
- импортных стиральных
  машин
- отечественных
  стиральных машин
- малой бытовой
  техники

разное

- сделай сам
- электрику



На главную
Схемы
Программы
Справочник
История
Журналы
Ссылки
Новости

 

Универсальный пробник электрика

28 ноября 2005 г.
Автор:
  Полянский, г. Москва
 

 

При изготовлении, налаживании и ремонте различных электроприборов приходится проверять наличие сетевого или стандартного выпрямленного напряжения в цепях, целостность электрических соединений и отдельных деталей.
Конечно, можно пользоваться в этих случаях авометром, но он порою неудобен, да и часто приходится отвлекаться, чтобы взглянуть на показания стрелки индикатора. Лучше пользоваться предлагаемым пробником.

 

Пробник позволяет определить наличие, характер (постоянное или переменное) и полярность напряжения, убедиться в том, имеется или нет обрыв цепи, а также оценить ее сопротивление, проверить конденсатор емкостью от нескольких тысяч пикофарад до сотен микрофарад на обрыв, короткое замыкание, ток утечки, проверить р-п переходы полупроводниковых приборов (диодов, транзисторов), проконтролировать состояние встроенной аккумуляторной батареи.

Принципиальная схема пробника

 

В состав пробника (рис. 1) входят тактовый генератор, входной коммутатор, два компаратора, два тональных (800 и 300 Гц) генератора, световые и звуковой индикаторы. Тактовый генератор собран на элементах DD1.2 и DD1.3. Он вырабатывает прямоугольные колебания по форме близкой к меандру (длительность и паузы равны), следующие с частотой около 4 Гц. С выходов генератора и подключенного к нему инвертора на элементе DD1 л противофазные сигналы поступают на входной коммутатор и компараторы.

Входной коммутатор состоит из токоограничивающих резисторов R5, R6. выпрямительного моста на диодах VD1, VD2, VD4. VD5, стабилитрона VD3 и электронных ключей на транзисторах VT1, VT3. включенных по схеме с общим коллектором. Коммутатор позволяет при проверке напряжений использовать их для питания собственных микросхем, а при проверке соединительных цепей и переходов полупроводниковых приборов — подавать на них переменное или постоянное напряжение. Компараторами работают элементы DD2.1H DD2.2. Каскады на элементах DD3.1 и DD3.2 — согласующие между компараторами и индикаторами. Тональные генераторы звуковой индикации собраны на элементах DD2.3, DD3.3 (800 Гц) и DD2.4, DD3,4 (300 Гц).

 

Печатная плата

Они нагружены на пьезокерамический излучатель BQ1. Каскады световой индикации выполнены на транзисторах VT4. VT5 (они работают в ключевом режиме) и светодиодах HL1, HL2 соответственно красного и зеленого цвета свечения. Яркость светодиодов определяется сопротивлением резистора R14.
Каскад на транзисторе VT2 используется только при проверке состояния источника питания — аккумуляторной батареи GB1, составленной из четырех аккумуляторов Д-0,03, Для подзарядки батареи в пробнике установлена цепочка R11VD6. ограничивающая зарядный ток до требуемого значения.

 

Рассмотрим режимы работы пробника, устанавливаемые переключателями SA1 и SA2.

При контроле напряжения (SA2 — в положении "U", SA1 - "U, R") входной сигнал через щупы Х1, ХЗ, разъем Х2 и токоограничивающие резисторы поступает на выпрямительный мост, эмиттеры транзисторов VT1, VT3 и входы компараторов. Включается в действие параметрический стабилизатор на стабилитроне VD3 и фильтрующий конденсатор C1 —с них напряжение поступает на микросхемы пробника и транзисторы коммутатора. Запускается тактовый генератор. Начинают поочередно открываться и закрываться транзисторы VT1, VT3.

 

Одновременно с закрытием одного из них на соответствующий компаратор подается сигнал разрешения работы. Если входное напряжение компаратора превышает половину питающего, компаратор срабатывает и включает генератор звуковой частоты и светодиод «своего» канала, К примеру, если на щупе Х1 относительно щупа Х2 плюсовое напряжение, раздается прерывистый звуковой сигнал частотой около 300 Гц вспыхивает светодиод HL1, а если минусовое — частота сигнала будет около 800 Гц и вспыхнет светодиод HL2.

 

При переменном напряжении в исследуемой цепи попеременно работают оба канала индикации.

Частота тактового генератора намного ниже частоты сетевого напряжения (50 Гц), поэтому при подаче на вход пробника выпрямленного, но не сглаженного напряжения, из-за его пульсаций успевает сработать второй компаратор. В итоге звук будет как бы модулироваться, что хорошо воспринимается на слух. Из-за инерции глаз срабатывания световой индикации заметить не удастся.

При контроле соединительной цепи и ее сопротивления (переключатель SA2 — в положении "R", SA1 - "U, R") вся электроника пробника питается от батареи GB1. Ее напряжение попеременно подается на щупы.

Предположим, что при текущем состоянии тактового генератора открыт транзистор VT1, а закрыт VT3. На щупе Х1 оказывается плюсовое напряжение, а на Х2 — минусовое, В этом случае запрещена работа компаратору DD2.2 (и его каналу индикации) и разрешена DD2.1. Если исследуемая цепь разомкнута или ее сопротивление велико (более 24 кОм), падение напряжения на резисторе R7 меньше напряжения срабатывания компаратора DD2.1, индикация отсутствует. С уменьшением сопротивления цепи возрастает напряжение на резисторе R7, Как только оно превысит половину напряжения питания, компаратор сработает, включатся звуковая индикация частотой 800 Гц и светодиод HL2.

С изменением состояния тактового генератора изменяются соответственно и функции компараторов. При этом в случае проверки цепей сопротивлением менее 24 кОм будут работать попеременно оба канала индикации. В этом же режиме проверяют р-n переходы полупроводниковых приборов. При обрыве (перегорании) перехода индикация отсутствует, при пробое работают оба канала индикации. Если переход исправен, можно сразу определить «полярность» его подключения к щупам пробника. Звуковой сигнал частотой 800 Гц и зажигание зеленого светодиода (HL2) означают подключение щупа Х1 к р-области (скажем, к аноду диода), частота звука 300 Гц и зажигание красного светодиода (HL1) свидетельствуют о соединении этого щупа с n-областью (катодом диода).

Для проверки конденсаторов переключатели устанавливают в положение "R". В этом случае работа тактового генератора прекращается, поскольку на выходе элемента DD1.1 устанавливается низкий логический уровень (логический 0). Такой же уровень установится на базе транзистора VT1, и он закроется. Транзистор VT3 окажется открытым, поэтому на щупе ХЗ будет плюсовое напряжение.

Предварительно разряженный конденсатор подключают к щупам пробника. Начинается зарядка конденсатора, на резисторе R2 появляется плюсовое напряжение, которое приводит к срабатыванию компаратора DD2.2. Включается индикация (зажигается светодиод HL1 и звучит сигнал частотой 300 Гц), которая через некоторое время выключается. Компаратор напряжения срабатывает на линей ном участке зарядки конденсатора, поэтому можно оценить емкость конденсатора по продолжительности работы индикатора — она прямо пропорциональна емкости.

В этом же режиме оценивают ток утечки конденсатора. Сначала конденсатор заряжают от щупов пробника, затем отсоединяют и, подождав 10... 15 с, снова подсоединяют к щупам. По продолжительности работы индикации оценивают, какую часть заряда конденсатор успел потерять. Чтобы проверить состояние батареи GB1, переключатель SA1 устанавливают в положение "KП" (контроль питания), а SA2 — в положение "R". Генератор стабильного тока на элементах VT2, rR3 и резистор R4 образуют микромощный стабилизатор опорного напряжения, к выходу которого подключен вывод 12 элемента DD1.1, При снижении напряжения батареи ниже 4 В происходит переключение выхода этого элемента в состояние логического 0 и блокировка работы тактового генератора. Когда в этом режиме при замыкании щупов работают оба канала индикации, можно пользоваться пробником. Если же непрерывно звучит сигнал частотой 300 Гц и горит светодиод HL1 — требуется подзарядка батареи. Тогда переключатель SA2 устанавливают в положение "3" (зарядка), а на щупы подают переменное напряжение 110...220 В. Продолжительность полной зарядки батареи — 14 ч. Каналы индикации при этом блокируются подачей сигнала высокого уровня на входы элементов DD3.1 и DD3.2.

Отдельный выключатель питания в пробнике отсутствует — его функцию выполняет переключатель SA2, который в режиме хранения следует устанавливать в положение "U" (потребляемый от батареи ток ничтожен — его даже не удалось зафиксировать). В ждущем состоянии при установке переключателя SA1 в положения "R", "KП", "U, R" потребляемый пробником ток составил соответственно 75, 130, 300 мкА. С включением индикации ток возрастает до 5 мА.

Допустим, батарея полностью разрядилась или вообще отсутствует. В этом случае пробником контролируют напряжение, пользуясь только звуковой индикацией.

 

Все транзисторы, кроме полевого, можно использовать серий КТ315, КТ3102 с любым буквенным индексом либо другие маломощные кремниевые. При использовании указанного на схеме или другого полевого транзистора подбирают резистор R3 такого сопротивления, при котором снижение напряжения батареи до 4 В приводит к появлению на выходе элемента DD1.1 логического О, Вместо микросхем серии К561 допустимо использовать аналогичные микросхемы серий 564, КР1561, Стабилитрон VD3 может быть с другим напряжением стабилизации, но не превышающим максимального напряжения используемых микросхем, транзисторов, конденсаторов при максимально допустимом токе стабилизации не ниже 20 мА.

Конструктивно пробник выполнен в корпусе из изоляционного материала (рис. 2)

 

Внешний вид

 

 размерами 135x44x19 мм. Щуп Х1 закреплен жестко, а Х2 соединяют многожильным гибким проводом в изоляции с гнездом Х2 на корпусе. Переключатели укреплены на корпусе так, чтобы их ручки можно было перемещать большим пальцем правой руки, не выпуская пробника и второго щупа из рук.

Остальные детали смонтированы на печатной плате (рис. 3) из двухстороннего фольгированного стеклотекстолита. Допустимо, конечно, другое конструктивное решение и монтаж пробника. Единственные условия — надежно изолировать все цепи, поскольку они находятся под напряжением сети, и обособить резисторы R5, R6, на которых при зарядке батареи может выделяться мощность до 1,5Вт. При налаживании пробника в первую очередь, как было сказано выше, подбирают резистор R3, Подбором же резистора R11 устанавливают ток зарядки батареи равным 3 мА.

Периодически нужно осматривать аккумуляторы батареи, очищать их поверхность от появляющегося налета.

Мы рекомендуем еще посмотреть:

Блок электронного зажигания

<< Назад в раздел   Распечатать   Рекомендовать

Автомобильные системы зажигания сейчас в основном построены на тиристорах [1], тем не менее, транзисторные системы не потеряли своей актуальности [2, З]. В последнее время выпускается много мощных, в том числе составных транзисторов с характеристиками, позволяющими использовать их для автомобильных систем зажигания.

Предлагаемая схема автомобильного электронного блока зажигания разработана и испытана автором в автомобиле "Жигули 2108" и др., в которых применяются транзисторные коммутаторы (3620-3734) с бесконтактным датчиком Холла (53.013706).

Отличием данной конструкции от штатной [2] является то, что для формирования импульсов прерывания используется микросхема К561ЛА8, включенная по схеме триггера Шмитта.

Технические характеристики практически не отличаются от штатного блока зажигания, но с применением триггера Шмитта импульсы прерывания формируются с более крутым задним фронтом, что позволяет практически мгновенно отключать источник тока от катушки зажигания, тем самым повышая высокое напряжение на ее вторичной обмотке.

Применение конденсатора С2 обеспечивает отключение катушки зажигания от источника тока при остановке двигателя автомобиля, тем самым предотвращая бесполезный нагрев катушки.

puc.1

Схема блока электронного зажигания, изображенная на рис.1, содержит:
- схему формирования импульсов с регулируемой скважностью на микросхеме DD1. собранную по схеме триггера Шмитта;
- мощный ключ на транзисторах VT1 и VT3 с активным ограничителем тока на транзисторе VT2,делителем напряжения на резисторах R8, R9 и токоизмерительным резистором R10;
- стабилизатор напряжения для питания микросхемы DD1 на стабилитроне VD4, конденсаторе СЗ и резисторе R3;
- схему защиты от превышения импульсного напряжения в бортовой сети на стабилитроне VD6, конденсаторе С4 и резисторе R11;
- схему защиты блока от неверного присоединения аккумуляторной батареи на диоде VD7;
- схему защиты транзистора VT3 от импульсных перегрузок при работе катушки зажигания на диоде VD5, резисторах R12, R13.

Работает схема следующим образом. При включении зажигания напряжение от аккумуляторной батареи подается на схему через диод VD7 и резистор R11. На катушку зажигания напряжение в начальный момент не поступает, так как стартер не вращает вал двигателя, и на входе микросхемы DD1.2 отсутствуют импульсы. На выходе DD1 присутствует напряжение низкого уровня, которое удерживает транзистор VT1 в закрытом состоянии, поэтому закрыт и транзистор VT3.

Когда стартер поворачивает вал двигателя, на выходе датчика возникают импульсы, поступающие через С2 на вход элемента DD1.1. Последний переключается, и на выходе DD1.2 появляется импульс, который открывает транзисторы VT1 и VT3. Через катушку зажигания проходит ток, и в магнитном поле катушки накапливается электрическая энергия. В следующий момент, когда с выхода датчика исчезает импульс положительной полярности, триггер Шмитта резко переключается в обратное состояние, на выходе элемента DD1.2 появляется низкий уровень, поступающий на базу транзистора VT1. Транзисторы VT1 и VT3 быстро закрываются, и ток, проходящий через катушку зажигания, также быстро исчезает. При этом в первичной обмотке катушки индуцируется ЭДС самоиндукции напряжением 400 В, а во вторичной обмотке катушки зажигания возникает импульс высокого напряжения — 23000...25000 В.

В мощном ключе на транзисторах VT1 и VT3 применена схема активного ограничения тока в катушке зажигания, которая защищает транзистор VT3 от перегрузки и стабилизирует величину тока "разрыва" при колебаниях питающего напряжения бортовой сети автомобиля, тем самым обеспечивая неизменность выходных характеристик системы зажигания [З].

При отпирании транзистора VT1 выходной транзистор VT3 насыщается, обеспечивая низкую величину остаточного напряжения на выходе блока электронного зажигания. Пока ток, протекающий через выходной транзистор VT3 и токоизмерительный резистор R10, включенный в его эмиттерную цепь, ниже допустимого уровня ограничения, транзистор VT2 заперт.

При достижении выходным током предельного уровня, транзистор VT2 начинает открываться, и потенциал на его коллекторе понижается, что приводит к уменьшению величины тока управления. Транзистор VT3 при этом выходит из режима насыщения в активный режим, напряжение на выходе возрастает до уровня, при котором поддерживается заданный режим тока ограничения. В случае превышения импульсного напряжения в катушке зажигания, оно через делитель R12-R13 подается на стабилитрон VD5, который, открываясь, запирает транзистор VT3. Цепочка C5-R14, включенная параллельно выходному транзистору, является элементом колебательного контура ударного возбуждения, т.е. определяет величину и скорость нарастания вторичного напряжения, развиваемого системой зажигания. Резистор R14 ограничивает емкостный ток через транзистор VT3 в момент отпирания последнего, если конденсатор С5 разряжен. Конструктивно блок электронного зажигания выполнен на печатной плате из одностороннего фольгированного стеклотекстолита размером 95х75 мм, на которой смонтированы элементы схемы. Плата устанавливается в штатный корпус от коммутатора 3620-3734.

В электронном блоке зажигания использована микросхема К561ЛА8 и резисторы МЛТ. Резистор R10 — типа С5-16 мощностью не менее 1 Вт. Конденсаторы — К73-11 на напряжение не менее 63 В. Диоды VD2, VD3 — КД521А или любые кремниевые маломощные. Стабилитрон VD1 — на напряжение стабилизации 8 В, типа Д814А или КС182А. Стабилитрон VD4 — на напряжение стабилизации 9 В, типа Д814Б или КС191А. Стабилитрон VD5 — КС518А или КС508Г. Диод VD7 — типа КД209А, можно заменить диодом КД226Г. Транзисторы VT1, VT2 — КТ972А; VT3 — КТ898А или КТ890А (КТ8109А). VT3 устанавливается на штатный радиатор из алюминиевой пластины толщиной 4 мм, изолированный от корпуса двойной слюдяной прокладкой с термопроводной пастой.

Для налаживания блока применяется звуковой генератор с частотой от 30 до 400 Гц, имитирующий работу датчика прерывателя. Для получения выходного сигнала напряжением 7...9 В, в случае необходимости, к нему нужно изготовить усилитель мощности на транзисторе КТ815 [4]. Для просмотра импульсов годится любой осциллограф, лучше двухлучевой. Кроме того, необходим блок питания с регулировкой напряжения от 8 до 18 В с током не менее 10 А.

На момент настройки схемы можно обойтись без катушки зажигания, нагрузив коллектор транзистора VT3 на дроссель с магнитопроводом из пластин электротехнической стали индуктивностью 3,8 мГн, сопротивлением 0,5 Ом. Для этого можно использовать унифицированный низкочастотный дроссель типа Д 179-0,01-6,3. Генератор-имитатор датчика импульсов подключают на вход схемы и наблюдают на осциллографе форму и амплитуду выходных импульсов.

Изменением сопротивлений в цепях VD2-R4 и VD3-R5 можно регулировать скважность импульсов, что позволяет регулировать время замыкания и размыкания катушки зажигания.

Для установки необходимого тока ограничения осциллограф подключают к эмиттеру транзистора VT2. При этом в эмиттерную цепь транзистора VT2 необходимо временно подключить резистор сопротивлением 0,1 Ом. Изменяя напряжение на блоке питания, наблюдают появление сигнала на эмиттере. Регулировка уровня ограничения тока производится резисторами R12 и R13. После предварительной настройки схему устанавливают в автомобиле в соответствии со схемой подключения [2] и производят ее окончательную настройку. 

Литература:

1. Ломакин Л. Электроника за рулем. — Радио, 1996, N8, С.58,
2. Старков В. Транзисторные системы зажигания — Радио, 1991, N9. С.26-29.
3. Бела Буна. Электроника на автомобиле. — М.: Транспорт,1979.
4. Автомобили "Жигули 2108" и их модификации. Устройство и ремонт. —       М.:  Транспорт,1987.
5. Ютт В.Е. Электрооборудование автомобилей: Учебник. — М.: Транспорт,1989, 175с.
6. Сидорчук В. Электронный октан-корректор. — Радио, 1991, N11, С.26.

Все самое необходимое для ремонта Электроники © ElectronicsDesign.RU, 2010. Все права защищены.